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Abstract:

For decades, stochastic modellers have used computerized random number generators to produce random numeric sequences
fitting a specified statistical distribution. Unfortunately, none of the random number generators we tested satisfactorily produced
the target distribution. The result is generated distributions whose mean even diverges from the mean used to generate them,
regardless of the length of run. Non-uniform distributions from short sequences of random numbers are a major problem
in stochastic climate generation, because truly uniform distributions are required to produce the intended climate parameter
distributions. In order to ensure generation of a representative climate with the stochastic weather generator CLIGEN within
a 30-year run, we tested the climate output resulting from various random number generators. The resulting distributions of
climate parameters showed significant departures from the target distributions in all cases. We traced this failure back to the
uniform random number generators themselves. This paper proposes a quality control approach to select only those numbers
that conform to the expected distribution being retained for subsequent use. The approach is based on goodness-of-fit analysis
applied to the random numbers generated. Normally distributed deviates are further tested with confidence interval tests on
their means and standard deviations. The positive effect of the new approach on the climate characteristics generated and the
subsequent deterministic process-based hydrology and soil erosion modelling are illustrated for four climatologically diverse
sites. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Random numbers in climate generation

For over 40 years stochastic modellers have been
using computerized random number generators (RNGs),
expecting random numeric sequences that fit the specified
statistical distribution. Unfortunately, their trust seems to
be misplaced. None of the many RNGs we tested pro-
duced the target distribution satisfactorily. This results in
distributions whose means do not even match the mean
they were generated from, regardless of the number of
iterations. In stochastic modelling, two attributes of ran-
dom number generation are of interest: (a) the ‘random-
ness’ of the number stream; (b) its faithful reproduction
of the expected statistical distribution. The first char-
acteristic is employed to mimic the apparently random
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occurrence of natural processes. The second is needed for
model equations to perform predictably as designed. This
stochastic process begins with a uniform RNG, which,
given enough iterations, is theoretically supposed to pro-
duce a uniform distribution of random numbers. In this
paper we do not examine the quality of the ‘random-
ness’ as addressed by Yu (2002); instead, we investigate
whether the numbers generated fit the expected distribu-
tions, specifically whether a standard normal distribution
results from our stochastic process that starts with a
uniform RNG, followed by a standard normal deviate
generator (SNG). Further, in this paper, comparisons are
made between climatic outputs of the model and histori-
cally derived climatic inputs to the model (monthly mean,
standard deviation (SD), skew), not between model out-
puts and daily historical observations per se. In other
words, we are comparing what climate came out of the
model with what climate went in to produce it.

The purposes of this study were:

1. To examine whether it is reasonable to expect the
monthly means and SDs of our weather generator’s
daily output to converge on the monthly means and
SDs used to generate them within a typical 30-year
simulation run.

2. If the monthly means and SDs are not reproduced, to
implement mechanical filtering to ensure this.

Copyright  2007 John Wiley & Sons, Ltd.
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3. To measure how well we can generate the actual
distributions of daily temperature and precipitation
expected.

4. To gauge the effects of these changes on a deterministic
process-based erosion model driven by the weather
generator outputs.

The Water Erosion Prediction Project (WEPP) model
(Flanagan and Nearing, 1995) and its Geospatial Interface
(GeoWEPP; Renschler, 2003) are process-based hillslope
and watershed models. Pruski and Nearing (2002) per-
formed a climate-change-motivated sensitivity analysis
of WEPP by varying the annual precipitation by either
changing the number of wet days per year, the amount
and intensity of daily rainfall, or combinations of either.
Their analysis showed that on an average based on three
locations with a diverse climate, each 1% change in aver-
age annual precipitation induced 1Ð28–2Ð50% change in
runoff and 0Ð85–2Ð38% change in soil loss. We used
the CLIGEN stochastic weather generator (Nicks et al.,
1995) to test modifications on the RNG and their effect
on the distribution of daily temperature and precipita-
tion and we used the deterministic WEPP to monitor the
impact on simulated runoff and sediment discharges. Two
versions of CLIGEN are used: version 4.x, which does
not utilize the quality control (QC) method, and version
5.x, which uses QC on its RNG and SNG.

WEPP users typically like to make model runs of
30 years, or at most 100 years to account for the stochas-
tic nature of the climate input; however, Baffaut et al.
(1996) found when using CLIGEN V-4Ð2 to drive WEPP
that ‘to obtain a stable running average of the annual soil
loss, 30 years of simulation was not enough’. In most
cases the minimum simulation period varied between 50
and 100 years, with some locations requiring even more
than 100 years (Baffaut et al., 1996). It is our expecta-
tion that if the stochastic CLIGEN V-5.x converges to its
input values more quickly, then the deterministic WEPP
modelling will converge more quickly too.

CLIGEN produces time-series of daily climate parame-
ters from static monthly values derived from daily values

observed at the site for some period of record. These
values include monthly mean, SD, and skewness. This
approach permits generation of representative weather
patterns for user-selectable time intervals, using a rela-
tively small amount of input data. The quality of results
produced by CLIGEN and other stochastic models, like
GEM (Johnson et al., 1996), WINDGEN (Wagner, 1999),
USCLIMATE (Hanson et al., 1994), WGEN (Richardson
and Wright, 1984), and also models that use their out-
puts, like SWAT (Arnold et al., 1995), SWRRB (Arnold
and Williams, 1994), GLEAMS (Knisel, 1993), EPIC
(Sharpley and Williams, 1990), WEPS (Hagen, 1991),
and CREAMS (Knisel, 1980), depends directly upon the
quality of the distributions produced by the RNGs. The
issues discussed in this paper are part of a much bigger
problem, the propagation of errors though a system of
data processing in an environmental model.

Renschler (2003) suggests a theory in this regard
that summarizes the paradigm of appropriately apply-
ing an environmental process model and offers guid-
ance to a solution: it requires the careful consideration
of all steps involved in integrating observed data, pro-
cessing/generation of model input parameters, modelling,
and decision-making based on these model results. He
describes that each step in such a ‘scaling sequence’ must
be assessed in terms of how data are being transformed
(scaled). The most basic scaling step is represented by
the transformation of a true pattern of a natural process
to a representative pattern described in the measured data
(Blöschl, 1999). The RNG of a weather generator is part
of such a scaling sequence to generate natural patterns of
various climate variables that are potentially model input
to other environmental process models. In this paper we
will discuss the steps that describe the effect of the RNG
for CLIGEN on predicting soil loss with the WEPP model
(Figure 1).

CLIGEN generates eight parameter distributions on a
daily time step. For normal distributions, like tempera-
ture, this is accomplished by feeding the output from an
RNG (Figure 1, step 1) into an SNG (Figure 1, step 2)
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Figure 1. Overview of the four computational steps to process information from the generation of random numbers to generate climate parameters
with CLIGEN and using them to predict runoff and soil erosion with WEPP (compare steps with Renschler (2003: figure 5))
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to produce sets of ‘normal deviates’ that approximate the
standard normal distribution. The values of each standard
normal distribution are then scaled by the correspond-
ing observed historical monthly mean and SD to produce
daily climate values (Figure 1, step 3). Thus, the qual-
ity of the daily climate parameter distribution produced
depends directly upon the quality of the distributions
produced by the RNG. Lack of quality assurance for
these distributions has potentially serious implications
for CLIGEN and for simulation models depending on it
(Figure 1, step 4). As mentioned in Press et al. (1992), ‘a
reliable source of random uniform deviates is an essential
building block for any sort of stochastic modeling’.

The stochastic weather generator CLIGEN

The equations used in CLIGEN to generate precipita-
tion and maximum temperature are briefly summarized
below. All the CLIGEN equations are documented in
detail in the WEPP model documentation (Nicks et al.,
1995: chapter 2). Generating a uniform random variable,
in combination with a two-state Markov chain, using the
observed probability for the month of a wet day follow-
ing a wet day P�WjW�, and a wet day following a dry
day P�WjD� determines whether precipitation should be
generated for the current day (Nicks and Harp, 1980). A
skewed normal Pearson Type III equation (Equation (1)),
provides the daily precipitation amount P:
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where x is the generated standard normal deviate
(Figure 1, step 2), u is the observed monthly mean of the
daily values when precipitation occurs, s is the observed
monthly SD, and g is the skew of the monthly precip-
itation. Daily maximum temperature Tmax is generated
using a normal distribution:

Tmax D uTmax C sTmaxx �2�

where u is the observed monthly mean and s is the
observed SD, for the current month. Both state-of-the-art
process-based erosion models in the USA, i.e. the water
erosion model WEPP and the wind erosion model WEPS
(Hagen, 1991), rely on CLIGEN to generate their climate
input (Figure 1, step 3).

CLIGEN performance

Johnson et al. (1996) observed that whereas CLIGEN
reproduced historical long-term average annual values
and extreme values for the simulation period reason-
ably well, it poorly reproduced year-to-year variance in
average annual temperature values and it did a dismal
job of reproducing the monthly SDs, failing all 72 tests
performed. Our goodness-of-fit tests on CLIGEN out-
puts indicated at high levels of probability that CLIGEN
V-4Ð2 monthly output distributions often did not match
the target distributions. Based on limited 20-year records
of precipitation data at two sites in Uganda, Elliot and

Arnold (2001) found significant differences between the
observed SDs of monthly precipitation and those pre-
dicted by CLIGEN. They noted this can be a problem
for erosion prediction models, because it is the occur-
rence of major events that generally causes most of the
larger, more drastic soil losses.

If CLIGEN’s problems were due primarily to its
climate equations, then the long-term historic means
probably would not be successfully reproduced for the
climatic variables; however, since the problem seems to
involve the distribution of the outputs relative to the
mean, it seems more likely that the distribution of random
numbers fed to the equations is suspect.

In this paper we propose to show that there is a problem
with the numeric distributions produced by common
RNGs in the way they are typically employed: that at
least for small lots of numbers appropriate to a 30-year
simulation the ‘uniform’ distributions are not uniform.
We show that subsequent calculations are adversely and
unacceptably affected. This is likely a problem in any
model that employs an RNG. Our method of QC may
be applied to the stream of numbers from an RNG in
any stochastic model to correct this deficiency. We show
comparisons between results of the quality-controlled and
the uncontrolled processes at each step.

METHODS AND MATERIALS

Chi-square goodness-of-fit test

The chi-square goodness-of-fit test can be employed
to determine the probability that one distribution differs
from another. The general approach is that the probability
space is divided into an arbitrary number of ranges (bins)
of arbitrary size, and the number of observations in a bin
is compared with the number expected. The method is
reputed to be somewhat sensitive to the number of bins
used. In practice we found it to be highly sensitive to
the number of bins, enough to render it useless for our
purposes (Table I).

Kolmogorov–Smirnov goodness-of-fit test

The Kolmogorov–Smirnov (K–S) test is another
goodness-of-fit test that compares the cumulative num-
bers in the bins. For continuous distributions, a very few
authors suggest K–S may be more suitable than chi-
square. Our tests verified the K–S test to be far less
sensitive to bin size (Table II). Consequently, it is also
to be used to measure goodness of fit when comparing
CLIGEN distributions of daily outputs with the monthly
parameters from which they were generated. It is also
used for QC of uniform distributions in the new ver-
sion of CLIGEN (5.x) reported in this paper. It might
seem that using the same statistical test for QC in the
model and then again to measure outputs of the model is
bound to give favourable results; however, this was not
the case when we initially used the chi-square test for
both purposes.
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Table I. Chi-square goodness-of-fit test on maximum temperature with varying number of equal-sized bins, showing probability that
the month’s set of daily values produced is not the target distribution. The 30-year run with CLIGEN V-4Ð2 (no QC) for Indianapolis,

INa

Bin no. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20 — 0Ð55 — 0Ð79 — 0Ð68 — — 0Ð57 0Ð90 — —
19 — 0Ð62 — 0Ð76 — 0Ð65 0Ð93 0Ð69 0Ð53 >0Ð99 — 0Ð64
18 0Ð81 0Ð84 — 0Ð93 — 0Ð78 — 0Ð70 0Ð76 >0Ð99 — 0Ð69
17 0Ð64 0Ð76 — — — 0Ð87 0Ð73 — — 0Ð55 — —
16 0Ð51 0Ð74 — 0Ð73 — 0Ð99 — — — 0Ð96 — —
15 — 0Ð69 — — — 0Ð54 — — 0Ð83 0Ð92 — —
14 — 0Ð57 — 0Ð81 — 0Ð89 0Ð98 0Ð57 0Ð80 — — 0Ð65
13 0Ð79 — — — — 0Ð78 0Ð52 0Ð83 — 0Ð96 — 0Ð67
12 — 0Ð77 — — 0Ð62 0Ð54 0Ð71 0Ð88 0Ð71 0Ð88 — 0Ð65
11 — — — 0Ð70 — — — 0Ð86 0Ð51 0Ð88 — —
10 — — — — — 0Ð50 — 0Ð61 0Ð59 0Ð95 — 0Ð51

a Probabilities below 50% are indicated with a dash, those above 75% appear in bold, and those above 90% are bold italic.

Table II. K–S goodness-of-fit test on maximum temperature with varying number of equal-sized bins, showing probability that the
month’s set of daily values produced is not the target distribution. The 30-year run with CLIGEN V-4Ð2 (no QC), for Indianapolis,

INa

Bin no. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20 — — — — — — — — 0Ð65 0Ð80 — —
19 — — — — — — — — 0Ð80 0Ð98 — —
18 — — — — — — — — 0Ð80 0Ð80 — —
17 — — — — — — — — 0Ð70 0Ð85 — —
16 — — — — — — — — 0Ð70 0Ð80 — —
15 — — — — — — — — 0Ð80 0Ð90 — —
14 — — — 0Ð50 — — 0Ð50 — 0Ð70 0Ð80 — —
13 — — — — — — — — 0Ð70 0Ð90 — —
12 — — — — 0Ð65 — 0Ð55 — 0Ð80 0Ð80 — —
11 — — — 0Ð50 — — — — 0Ð50 0Ð75 — —
10 — — — — — — — — 0Ð65 0Ð80 — —

a Probabilities below 50% are indicated with a dash, those above 75% appear in bold, and those above 90% are bold italic.

Confidence interval tests

The central limit theorem states that sample means
approach a normal distribution as the number of samples
becomes large, regardless of the underlying distribution
(Ross, 1993). Statisticians generally agree that the num-
ber of samples required for a test is around 20 for sym-
metric distributions that resemble a bell-shaped curve,
and around 30 for others. This powerful theorem justifies
confidence interval (CI) testing on means, and even on
SDs if the underlying distribution is known. We employ
CI tests in two different ways: one after a run and one
during a run.

To determine whether CLIGEN was generating the
expected means of daily climate values, we performed
CI tests on CLIGEN’s daily climate outputs. Since
CLIGEN generates its outputs from monthly parameters,
the appropriate comparison is the mean of CLIGEN’s
daily outputs for each month with the historical monthly
means using the historical monthly SDs from which the
daily outputs were generated.

Implementing the quality control and correction method

To accomplish the automated random number QC in
CLIGEN V-5.x, code was added to V-4.x to perform K–S

testing on all uniform distributions generated. Then CI
tests are performed for all normal distributions generated
(Figure 1, step 2), testing both the means and SDs
(Meyer, 2006). For the results reported in this paper,
the only difference in CLIGEN V-4.x and V-5.x is the
absence of this QC in the former and its presence in
the latter. In CLIGEN V-5.x, deviates are generated for
each parameter a month at a time and tested. Because
our goal is simply to achieve the desired distribution at
the end of the run, the numbers for each parameter are
examined each month, as a total set from the beginning
of the simulation through the current month. If they fail
QC, then a new set for the current month is generated
and tested. In effect, this permits relaxing the constraints
as the run progresses so that we preclude fewer extreme
events than if we controlled each month independently.
We arbitrarily selected a probability threshold of 50%.

The appropriate CI test statistic for the mean is

X � �

υ/
p

N
³ N�0, 1� �3�

where N is the number of samples, X is the sample mean,
� is the population mean (for standard normal, � D 0);
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� is the population SD (for standard normal, � D 1), and
N(0,1) is distributed normally (mean: 0; SD: 1).

Since the distribution produced by the SNG is sup-
posed to be standard normal, the SD is also easy to test.
The statistical test for the SD is

∑
i

(
Xi � �

υ

)2

³ X2�N� �4�

where Xi is the value of the i-th sample and X2�N� is
distributed chi-square, with N degrees of freedom. But
for a standard normal population this reduces to∑

i

�Xi
2� ³ X2�N� �5�

Graphical convergence tests

We used a check by graphical inspection to judge
whether the distribution from each RNG seemed to
be converging, how fast, and whether it appeared to
be converging to the expected value (Figure 2). For a
uniform distribution where xi is the random number
generated and 0Ð5 is the expected value of x, the mean
value of xi � 0Ð5 should converge to zero.

Because the expected value of a sum is the sum of
the expected values, it follows from Equations (6) and
(7) that the sum on the left-hand side of Equation (8)
should also converge to zero:

E
N∑

iD1

�Xi � 0Ð5� D
N∑

iD1

E�Xi � 0Ð5� �6�

E�Xi � 0Ð5� D 0 �7�
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Figure 2. Example of three series: (a) one that does not converge; (b) one
that converges, but on the wrong value; (c) one that converges on the

value expected
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RESULTS

CLIGEN without quality control (version 4.X)

For our initial tests we used CLIGEN V-4.x, which
exerts no QC on its random deviates. Because we
observed that, for runs up to 1000 years, CLIGEN
always seems to converge on its final mean value
within 28 years (possibly due to its internal level of
numeric precision), we selected 30-year runs as a good
compromise between minimum runtime and reaching
steady state. The parameters of interest were daily
maximum temperature and daily precipitation amount.
We used a spreadsheet to compute the probability that
the daily outputs were from a population different than
the historically observed one represented by the input
monthly mean and SD (and skewness in the case of
precipitation). (This corresponds to Figure 1, step 3.)
Maximum temperature is mathematically simple to test,
since CLIGEN uses a normal distribution to produce it.
Precipitation is somewhat more complex, since a skewed
normal (Pearson Type III) is used. For this reason, initial
adequacy checks of the chi-square and K–S tests were
performed using daily maximum temperature.

In goodness-of-fit tests, the choice of the number
and size of bins is arbitrary: the bins merely must
cover the entire probability space. (The chi-square test
additionally requires a minimum expected frequency of
five per bin.) To simplify our task we chose to make our
bin size uniform, having the same number of expected
observations. Since there are several goodness-of-fit tests
that we might employ, it was necessary to identify one
that gave consistent results, regardless of the number
of bins used. We ran the chi-square goodness-of-fit test
varying the number of bins from 10 to 20. It proved
so inconsistent that we deemed it useless for judging
whether the desired distribution was produced (Table I).
The K–S test was much more consistent. The results
shown in Table II for Indianapolis, Indiana, are typical
of all locations tested. We concluded that the RNG in
CLIGEN produced unacceptable results.

Bringing the generator process back into control

In an industrial setting, when a production line goes
out of control one might try to improve the quality of the
units produced by improving the process that produced
them, i.e. replace the RNG and/or SDG in CLIGEN
with better ones. We examined a number of RNGs
(see Meyer (2006) for RNG names and source code)
and concentrated further testing on the most promising
ones. Because our users require a reproducible sequence
of numbers, RNGs based on the system clock were
not considered. Several of the alternate RNGs yielded
measurable improvements; however, none consistently
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produced results that demonstrated the process was under
control.

When it is not feasible to improve the quality of the
units produced, industry commonly resorts to inspection
of the units coming off the production line, and rejection
of those not within specifications. Of course, more strin-
gent specifications result in a higher rejection rate, and
specifications that are unreasonably rigid can conceiv-
ably curtail the acceptance rate to zero. The confidence
interval approach is commonly used in manufacturing
to ensure that goods meet the desired production qual-
ity standards. If CLIGEN’s RNG and SNG together are
thought of as a “factory” producing random numbers
with standard normal distribution for the CLIGEN cli-
mate equations to use, the quality of the distribution can
be both measured and controlled using K-S testing on
uniform distributions, and confidence interval testing of
the mean and the SD of normal distributions.

CLIGEN with quality control (version 5.x)

Automated K–S and CI code to measure and con-
trol the random deviates was added to CLIGEN V-4.x
to create CLIGEN V-5.x. We arbitrarily used a confi-
dence threshold of 50% for each stochastically generated
parameter, rejecting monthly lots of uniform deviates
if the K–S indicated more than a 50% probability of
non-uniformity, and subsequently rejecting standard nor-
mal deviates which, when combined with those already
accepted, would give either a mean or SD outside the
50% confidence limits.

Table II clearly shows that the daily maximum tem-
perature outputs from CLIGEN are failing to reproduce
the original distribution of daily values for October, and
there is a high probability they are failing for September
as well. However, Table III shows that controlling the
uniform deviates with K–S and the means and SDs of
the standard normal deviates with CI is sufficient to bring
the daily values of the temperature distribution in line
with the original historically observed distribution, with
a maximum 65% probability of difference, regardless of
bin size used for the test.

We chose four climatically diverse sites, listed in
Table IV. For these sites, Table V summarizes CI tests
comparing the monthly means of precipitation (both with
and without QC) with the historically observed means.
The original version without QC was outside the 95%
confidence limits 7 of 48 times (15%), and outside
the 50% confidence limits 25 of 48 times (52%). By
comparison, the version with QC was outside the 95%
confidence limits 0 of 48 times and outside the 50%
confidence limits only twice (4%).

For the same stations, average error in annual mean
precipitation for the version with QC was 8Ð33 mm, and
without QC it was 37Ð82 mm (4Ð5ð). Average error in
monthly mean precipitation for the version with QC was
2Ð97 mm, and without QC it was 7Ð04 mm (2Ð4ð); and
average error in SD by station was respectively 2Ð36 mm
and 6Ð05 mm (2Ð6ð). The analogous error in precipitation
per event was 0Ð20 mm and 0Ð74 mm (3Ð6ð), with SD
of 0Ð18 mm and 0Ð61 mm (3Ð9ð) respectively. Average
error in monthly event number was 0Ð357 and 0Ð478

Table III. K–S goodness-of-fit test on maximum temperature, with varying number of equal-sized bins, showing probability that
the month’s set of daily values produced is not the target distribution. The 30-year run with CLIGEN V-5Ð2255 (with QC), for

Indianapolis, INa

Bin no. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20 — — — — — — — — — — — —
19 — — — — — — — — — — — —
18 — — — — — — — — — — — —
17 — — — — — — — — — — — —
16 — — — — — — — — — — — —
15 — — — — — — 0Ð55 — — — — —
14 — — — 0Ð50 — — — — — — — —
13 — — — — — — 0Ð60 0Ð60 — — — —
12 — — — — 0Ð65 — 0Ð50 — — — — —
11 — — — 0Ð50 — — — — — — — —
10 — — — — — — — — — — — —

a Probabilities below 50% are indicated with a dash, those above 75% appear in bold, and those above 90% are bold italic.

Table IV. Climate classification for four different test sites used

Station, state Köppen climate
classificationa

Annual temperature
distribution

Annual precipitation
distribution

Avg. annual
precipitation (mm)

Indianapolis, IN Cfb Warm summer Uniform 1013Ð1
College Station, TX Cfa Hot summer Uniform 959Ð5
Moscow, ID Dsb Warm summer Dry season 621Ð5
Tucson, AZ Csa Hot summer Dry season 293Ð2
a Griffiths and Driscoll (1982).
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Table V. CI test on precipitation per event, comparing the generated monthly mean with the historically observed values. The 30-year
run with CLIGEN V-4Ð2 (no QC) and V-5Ð2255 (with K–S QC)a

Station Source Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Indianapolis, IN Obs. 0Ð23 0Ð24 0Ð27 0Ð29 0Ð34 0Ð40 0Ð45 0Ð39 0Ð36 0Ð32 0Ð33 0Ð26
V-4Ð2 0Ð26 0Ð24 0Ð29 0Ð33 0Ð31 0Ð48 0Ð42 0Ð35 0Ð43 0Ð32 0Ð35 0Ð26
V-5.x 0Ð24 0Ð26 0Ð28 0Ð28 0Ð34 0Ð40 0Ð44 0Ð38 0Ð35 0Ð34 0Ð34 0Ð26

College Station, TX Obs. 0Ð30 0Ð38 0Ð33 0Ð53 0Ð61 0Ð57 0Ð43 0Ð42 0Ð60 0Ð60 0Ð42 0Ð37
V-4Ð2 0Ð33 0Ð46 0Ð29 0Ð54 0Ð63 0Ð60 0Ð46 0Ð42 0Ð61 0Ð69 0Ð46 0Ð39
V-5.x 0Ð30 0Ð38 0Ð33 0Ð53 0Ð62 0Ð60 0Ð43 0Ð41 0Ð62 0Ð61 0Ð44 0Ð37

Moscow, ID Obs. 0Ð20 0Ð19 0Ð16 0Ð18 0Ð21 0Ð21 0Ð20 0Ð22 0Ð19 0Ð21 0Ð21 0Ð20
V-4Ð2 0Ð22 0Ð20 0Ð17 0Ð18 0Ð25 0Ð19 0Ð19 0Ð22 0Ð20 0Ð19 0Ð22 0Ð24
V-5.x 0Ð21 0Ð18 0Ð16 0Ð18 0Ð21 0Ð20 0Ð21 0Ð23 0Ð18 0Ð20 0Ð21 0Ð20

Tucson, AZ Obs. 0Ð19 0Ð19 0Ð17 0Ð15 0Ð11 0Ð13 0Ð22 0Ð25 0Ð30 0Ð29 0Ð20 0Ð21
V-4Ð2 0Ð20 0Ð22 0Ð17 0Ð17 0Ð10 0Ð23 0Ð20 0Ð29 0Ð35 0Ð28 0Ð11 0Ð17
V-5.x 0Ð20 0Ð18 0Ð17 0Ð15 0Ð10 0Ð13 0Ð20 0Ð26 0Ð28 0Ð28 0Ð20 0Ð22

a Probabilities outside the 50% CI appear in bold, and those outside the 95% CI are also in bold italic.

respectively. The results were consistently more uniform
with QC; but, because underestimates from individual
months can cancel out overestimates when comparing
events per year, the average error in events per year was
virtually identical for the two versions at 0Ð7.

Table VI shows a K–S comparison of the daily pre-
cipitation distributions at the same four stations with
the distribution derived from the historical parameters. It
should be noted that, for those months when the quality-
controlled version of CLIGEN failed to achieve a good
match to the target distribution, the skew values were
high (3Ð4 to 4Ð1), and we have observed that the skewed
normal equation used in CLIGEN performs poorly when
the skew exceeds values in the range 2Ð25–2Ð50. So, this
failure is probably due to lack of robustness in the CLI-
GEN precipitation equation.

We ran convergence checks for four RNGs: RANDN
from CLIGEN (Nicks et al., 1995), RAN2 from Press
et al. (1992), RAN3 from GEM (Johnson et al., 1996),
and RANDN with QC. Figure 3 illustrates to what extent
each uncontrolled RNG tested converges to its expected
mean value in a 100-year run, and the extent to which
our QC improved the situation for the RNG employed in
CLIGEN.

The running sum convergence check was employed
to examine the serial independence of the three RNGs:
RANDN, RAN2, and RAN3 (Figure 4). (Serial indepen-
dence implies that a user can draw a subset of num-
bers from anywhere in the stream without affecting the
distribution of the numbers sampled.) Approximately
3 650 000 iterations, equivalent to a 10 000-year run of
CLIGEN, showed each of them to cycle, first showing
strong bias in one direction and then in the other. This
shows that none of the RNGs tested exhibited serial inde-
pendence.

CLIGEN quality impact on deterministic soil erosion
modelling

The climate data generated were subsequently used to
compare results from the WEPP soil erosion model (see
also Figure 1, step 4.) We chose the four climatically
diverse sites listed in Table IV. In Table VII we compare
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Figure 3. Running means of uniform deviates (minus 0Ð5, the expected
value) for daily values for a single parameter and month from three
RNGs without QC (a–c) and one with QC (d), showing their respective

convergence upon the proper value (zero)

the annual means of their daily precipitation values with
the average annual precipitation values from the historic
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Table VI. K–S test on precipitation per event, comparing the generated monthly distribution with distribution derived from the
historically observed parameters. Using 10 equal-sized bins, showing probability that the month’s set of daily values produced is not

the target distribution. The 30-year run with CLIGEN V-4Ð2 (no QC) and V-5Ð2255 (with K–S QC)a

Station Source Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Indianapolis, IN V-4Ð2 0Ð55 — — 0Ð90 — 0Ð70 — 0Ð65 0Ð85 0Ð80 — 0Ð65
V-5.x — — — — — — — — — — — —

College Station, TX V-4Ð2 — — 0Ð95 — — — — — 0Ð65 — — 0Ð70
V-5.x — — 0Ð80 — — — — — — — — 0Ð50

Moscow, ID V-4Ð2 0Ð85 — — — 0Ð55 0Ð50 0Ð50 0Ð80 — — — —
V-5.x — — — — — — — — — — — —

Tucson, AZ V-4Ð2 — 0Ð60 — — — 0Ð98 >0Ð99 0Ð65 0Ð80 — — 0Ð85
V-5.x — — — — — 0Ð70 >0Ð99 0Ð85 — — — —

a Probabilities below 50% are indicated with a dash, those above 75% appear in bold, and those above 90% are bold italic.
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GEM RAN3 (300,000 values)

-150

-100

-50

0

50

100

150

200

1 101 201

1000 values per point

R
u

n
n

in
g

 S
u

m

Cligen RANDN w/QC (300,000 values)
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Figure 4. Running sums of uniform deviates (minus 0Ð5, the expected
value) for daily values for a single parameter and month from three
RNGs showing lack of convergence after 300 000 iterations. Note that
this illustrates their lack of serial independence when used in this manner

record at each site. Since CLIGEN V-4Ð2 and V-5.x used
the historic monthly means to compute their daily values,
the computed average annual value should converge back
to the historically measured value. The same hillslope
topography, soils and land management were used for all
four locations.

Since CLIGEN’s output reports the historic monthly
means for the site, it is easy to determine whether the
version with QC is reproducing the historical recorded
mean annual precipitation better than the original ver-
sion. The results of 30-year CLIGEN runs summarized
in Table III show that, when CLIGEN V-4Ð2 differed sig-
nificantly from the QC version CLIGEN V-5.x, the QC
was closer to the observed average annual precipitation.
Also note the similarity of average annual precipitation
and runoff amounts for Moscow, ID (MOS), and the dif-
ference between the amounts of average annual sediment
yield predicted by the WEPP model. This underscores the
need to reproduce the historical distributions accurately,
not just the total amounts. A more detailed evaluation
of the ability of the CLIGEN model to reproduce daily,
monthly, and annual precipitation amounts, extremes, and
internal weather or storm patterns (i.e. storm duration,
relative peak intensity, and time to peak) and the assess-
ment of the impact of generated storm patterns on WEPP
runoff and erosion prediction can be found in Zhang and
Garbrecht (2003). They found that CLIGEN-generated
precipitation durations were generally too long for small
storm events and too short for large storm events, caus-
ing WEPP prediction errors as high as 35% for average
annual runoff and 47% for annual sediment yield at four
sites in Oklahoma.

DISCUSSION

We became interested in using QC on our RNG when we
observed events occurring in a 100-year run that would
not be expected in 10 000 years. We traced the problem
back to our RNG. It was generating a few extremely
aberrant values that radically altered the distribution
mean, the most elemental statistical metric. Initially we
sought to replace our RNG with a better one. Testing
every RNG we could find, we discovered they all share
the same weakness. Our next idea was to filter the output
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Table VII. Stochastic CLIGEN-generated average annual precipitation and deterministic simulated runoff and soil loss (WEPP). The
30-year run with CLIGEN V-4Ð2 (no QC) and V-5Ð2255 (with K–S QC)a

Station Data source Avg. precipitation (mm year�1) Avg. runoff (mm year�1) Avg. soil loss (kg m�2 year�1)

Indianapolis, IN Observedb 1013Ð1 n.a. n.a.
V-4.x 1034Ð9 144Ð5 10Ð1
V-5.x 1011Ð9 130Ð7 9Ð7

College Station,
TX

Observedc 959Ð5 n.a. n.a.

V-4.x 1040Ð4 307Ð6 33Ð6
V-5.x 987Ð7 265Ð4 28Ð1

Moscow, ID Observedb 621Ð5 n.a. n.a.
V-4.x 643Ð0 21Ð7 1Ð9
V-5.x 644Ð4 21Ð4 1Ð5

Tucson, AZ Observedb 293Ð2 n.a. n.a.
V-4.x 310Ð1 25Ð5 4Ð2
V-5.x 291Ð1 21Ð2 3Ð9

a Note that relative changes to CLIGEN V-5.x results above 5% appear in bold, and those above 10% are bold italic; n.a.: not available.
b Average based on 45 years of observations.
c Average based on 42 years of observations.

of the RNG. (Like adding a filter to the kitchen faucet
to remove chlorine, water delivered by the municipal
supplier, which is for the most part safe and good,
but which has a disagreeable taste and odour, becomes
much more palatable after removing that relatively small
amount of chemical!) We decided to reject a set of
numbers if we were more than 50% sure it was ‘bad’
(P50). Note that using a higher threshold level does
not ensure a more realistic retention of extreme values,
since the values generated have more freedom to go
lower as well as higher. While Table VIII shows higher
extreme values at 95% and 90% rejection threshold,
the once at 50% are all lower than observed. It is
also interesting to note for the values in Table VIII
that the K-S goodness of fit statistics do not change
one whit across the three P-values used. From this
we infer that any mismatch is due to our assumption

that a skewed normal represents the natural population,
rather than flaws in our random number generation
process.

Clearly, the RNGs we tested are not producing the
results we require within the modelling time-frame we
need. Although it could be true that our interval is
too short to provide the desired distribution, it seems
more likely due to other problems, since our runs of
3 650 000 iterations (equivalent to 10 000 years) are also
unacceptable. To examine whether the cumulative effect
of low numeric precision in the computer algorithms of
the RNG was biasing the results, the algorithms were
changed from single precision to double precision. This
did not correct the problem.

The practical effect of the mechanical screening is
to ensure the desired distribution mean and SD at the
expense of some randomness. The shorter the run, or the

Table VIII. Differences between observed and generated precipitation with variable rejection threshold (18-year breakpoint
precipitation record for Birmingham, AL). A 95% rejection threshold for the random number stream means that only monthly
lots of random numbers that are 95% sure that they do not match the target distribution (e.g. uniform or normal) will be rejected
and, consequently, another monthly lot will be generated instead. K–S tests for all values generated using 10 bins at natural breaks
of observed data showed less than 50% probability that the distribution generated was different from the observed distribution for

events greater than 2.5 mm

Observed in 18 years Rejection threshold (%) Generated in no. of years

18 25 36 50 100

No. of events 87Ð6 50 91Ð9 85Ð7 86Ð5 86Ð3 87Ð3
90 94Ð3 87Ð8 87Ð8 89Ð1 87Ð8
95 87Ð6 95Ð4 89Ð6 88Ð7 89Ð8

Mean event precipitation 13Ð6 mm 50 13Ð6 13Ð6 13Ð5 13Ð4 13Ð6
90 13Ð6 13Ð8 13Ð7 13Ð8 13Ð7
95 13Ð6 13Ð7 13Ð9 13Ð9 13Ð8

Maximum event precipitationa 162Ð6 mm 50 149Ð1 149Ð1 149Ð1 178Ð3 178Ð3
90 162Ð6 120Ð4 120Ð4 150Ð9 150Ð9
95 162Ð6 132Ð6 132Ð6 221Ð3 221Ð3

Annual precipitation 1189Ð9 mm 50 1253Ð8 1163Ð7 1168Ð3 1160Ð5 1183Ð0
90 1305Ð6 1200Ð2 1210Ð4 1216Ð7 1211Ð0
95 1189Ð9 1309Ð9 1245Ð1 1236Ð1 1241Ð2

a Note: minimum event size was consistently 0Ð3 mm.
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more control exerted by the filter, the more pronounced
this trade-off becomes. For our purposes, the desired
distribution is more essential than the randomness, so we
feel it is an acceptable compromise. There were concerns
that filtering might eliminate ‘extreme events’, which are
of the greatest significance in single-event as well as long-
term erosion prediction. This does not occur if one runs
the simulation sufficiently long enough (see Table XIII).
How long is ‘long enough’? Operating at a 50% level
of probability, i.e. P50, we exceed the largest observed
event by running 2Ð5 times as long as the period of record.
With a simulation of the same duration as the historical
period of record we get an extreme event within 10%
of the maximum historically observed. (P50 means we
are allowing only a 50% chance that the distribution
generated is not the original distribution.) Using looser
control, i.e. P90 or P95, would shorten the run required
to duplicate extreme events, but would allow less strict
adherence to the mean and SD. This level is easy enough
to change. The ‘best’ probability level depends upon the
needs of the user.

One potential problem with this QC approach is that
it may skew the results in time. Our primary goal was
to achieve the desired distribution at the end of the run.
The numbers for a given parameter and month of the
year are generated and tested in combination with those
previously accepted, as each new year is simulated. There
are two offsetting factors involved in the CI QC test (the
second test applied to normal distributions after the K–S
test):

1. When very few numbers are involved, the confidence
interval is very wide. There is not enough information
to constrain the interval much.

2. As more numbers are added to the distribution tested,
the confidence limits get tighter, but adding a really
aberrant mean (or SD) does not affect the mean of the
overall group very much.

Currently, it is not known how these offsetting factors
play out against each other in the early stages of the run. It
is conceivable that a divergent number might be rejected
early in the run, but accepted later, once the system has
enough ‘mathematical inertia’ not to be grossly affected
by it. More investigation is needed to examine this. Of
course, if it is determined that the first 5 years of a
30-year run are biased, then one might simply make a 35-
year run and discard the first 5 years. However, Figure 4
shows that serial dependence is already a problem in all
the uncontrolled RNGs we tested, not just ours with QC.

Because, by definition, two normal distributions are
‘equivalent’ if they have the same mean and SD, we orig-
inally expected that achieving this condition alone would
be sufficient to give satisfactory normal distributions. It
does seem to be adequate for generating distributions
with the correct mean and SD. However, if it is desir-
able to reproduce the target distribution faithfully over
small intervals of the range, then a more stringent QC is

needed. Adding the chi-square test to the uniform distri-
bution gave improved but disappointing results. Table I
illustrates why: it is inconsistent when bin size is varied.
Adding the K–S test on the uniform did a much more
satisfactory job, especially where the standard normal dis-
tribution is used to generate a skewed normal (Pearson
Type III), as in CLIGEN’s precipitation outputs. The K–S
test using 20 intervals is a much more stringent mathe-
matical test, relying on 20 numbers instead of just two
(mean and SD). We now use it to test all uniform distri-
butions generated in the model. For normal distributions
we follow the K–S with CI tests on the mean and SD.

SUMMARY AND CONCLUSIONS

We have demonstrated conclusively that, for short-
duration runs, the unfiltered RNGs we tested are not
producing the uniform distributions we require, or the
standard normal distributions we expect, and this prob-
lem cascades forward to produce unacceptable results
from model equations designed for such distributions,
culminating in unacceptable distributions of daily climate
outputs. The results of stochastic weather generators, and
deterministic hydrology models that depend on them, are
sensitive to the quality of their randomly generated dis-
tributions. Fortunately, this problem is relatively easy to
remedy, as shown in this study, without major changes
to the existing program structure using this straightfor-
ward QC method. Although we chose 50% for our QC,
the level selected is somewhat arbitrary. Users may want
to use a higher probability level to apply less stringent
control in order to preclude fewer extreme events early
in the run. However, the level selected should be suffi-
cient to cause the mean value of the RNG to converge in a
reasonable length of time. The number of iterations avail-
able before the model run must end and, consequently,
the degree of control required to create convergence may
vary considerably according to the application. We rec-
ommend implementing the QC approach presented rather
than searching for, or developing, the perfect RNG. The
procedure described can be readily retrofitted into any
stochastic model using random number streams.
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